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The decay of slow viscous flow
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Abstract. A weak force acts within a viscous fluid for a finite time leading to a slow flow with negligible viscous
effects; the force then ceases so that the fluid returns steadily to a state of rest under the action of diffusion. In the
model developed, the force is equivalent in time to a delta function mathematically, having the form of a pulse
physically; singular solutions such as rotlets and stokeslets are introduced to simplify the calculations and their use
can be justified as representing solid bodies. Here we solve the transient Stokes flow equations to find the behaviour
in a number of different situations, the rates of decay are computed, and the nature of the final motion described. A
number of general conclusions are deduced from these examples.

1. Introduction

The purpose of the present paper is to consider the nature of the decay in time of a slow
viscous (Stokes) flow. The situation we are interested in specifically concerns a volume of
fluid which has been subject to a force for a finite period of time, thereby developing a
motion in the fluid; this force then ceases to act so that the motion comes to rest
freely — rather than through the possibility that the force itself tends to zero steadily, so
controlling the decay. We assume that the velocities developed during the time of action are
sufficiently small so that the flow can be taken to be slow in the sense that the non-linear
inertial terms in the Navier-Stokes equations are negligible throughout. Nevertheless, there
will be a wide range of conditions under which a fluid passes through its final stages before
coming to rest in a manner governed by such a linear analysis; the major characteristic is that
the flow is dominated by diffusion. The main questions raised concern both the rate at which
the motion in the fluid comes to rest, and the nature of the final behaviour present as the
time tends to infinity; this will be the behaviour which can be observed at the end, and will
lead to the final drag or torque which the fluid exerts on the boundary of the container.

Now the Stokes flows represent motions where the Reynolds number is effectively zero,
and such behaviours are invariably considered as being time-independent basically because
when there is some variation over time it can be accommodated through taking the flow to
be quasi-steady, with the external variable (the velocity of the body, for example) being the
time-dependent parameter in an otherwise steady flow. Stokes [1] presented the solution for
the flow of a uniform stream past a sphere, and this result was extended by Basset [2] who
calculated the effect of a variable velocity on the drag through the so-called ‘memory term’;
this quantity can certainly be considered negligible under a wide range of conditions.

The intention here is to consider intrinsically unsteady flows through investigating the
effect of weak pulses on motions in a viscous fluid, where the term ‘pulse’ is used to
represent the rapid motion of a body for a short period of time. More precisely, when a body
is moved with a constant velocity U, for a fixed time T, we are concerned with the limiting
situation where U, is large and T, is small such that the product U, T, has finite magnitude;
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clearly this product is a measure of the distance a which is travelled by the body. When the
viscosity of the fluid is v, then we can define a Reynolds number Re by Re = Uyav ' =
UZT,v™" for such situations.

If we define lengths by ax, ay, az in cartesian co-ordinates, and time by T,t, then the
inertial terms in the Navier—Stokes equations are negligible when this Reynolds number is
small. We consider flows which satisfy the resultant equations

u.+tv,+w =0, (1.1)
u=-p,tu, tu, tu, #0, (1.2)
v,=-p,tu,tv, +v, #0, (1.3)
w==p, tw, +tw, +w, %0, (1.4)

where u, v, w are the non-dimensional velocities in the x, y, z directions and p is the
pressure, to be the consequences of ‘weak pulses’.

This model is taken to represent any force, or forced motion, in the fluid which acts for a
finite time and then stops. We find that the decay can be rather rapid in many of the bounded
geometries, and so the dominant term for large ¢ in the mathematical solution does represent
the observable flow for much of the time. It can also be anticipated that the results have
value for pulses of magnitude larger than those which strictly satisfy our requirement of
being weak.

The equations (1.1)—(1.4) have been considered in a number of different contexts (see, for
example, Kim and Karrila [3]). Certainly the most well-known correspond to Rayleigh flows,
where an infinite cylinder with constant cross-section moves parallel to its generators.
Diffusion alone acts, and so these equations represent exact solutions to the Navier-Stokes
equations. The classical result of Stokes [1] himself describes the effect of impulsively
starting an infinite flat plate, and the essential role of the diffusive variable yr~'’? (when the
motion is parallel to the x-axis) is emphasised. The later work of Batchelor [4] and Hasimoto
[5] catalogued many equivalent solutions for more complicated geometries; much of the
mathematics required had been developed earlier for heat conduction problems (cf. Carslaw
and Jaeger [6]). When, for example, the infinite plate y =0 is moved parallel to the x-axis
then the velocity from a pulse of unit magnitude at =0 is given by

2
y y
u= 212372 eXP(—Zt_) (1.5)

on differentiating the solution of Stokes (see Fig. 1). As t— oo, with y=0(1),
u=17""?yt7>? and the velocity decays algebraically in time with the final motion being a
simple shear with u «<y. All the solutions of Batchelor and Hasimoto can be differentiated
similarly to give pulse solutions. In the limiting situation of U,— >~ and T,— 0 such that
U,T, = O(1) the force leading to the pulse is represented by the Dirac delta function, and so
the solutions for such situations can be calculated from the corresponding solutions for the
impulsively started flow, where the force is represented by the Heaviside step function.

In his text, Oseen [7] developed solutions for a large number of linear problems in
hydrodynamics using fundamental solutions (Greens functions) as the basic building blocks,
with general bodies being represented by a distribution of these singularities. A substantial
section was concerned with unsteady flows. More recently, Smith [8, 9] and Hansen [10] have
described some particular two-dimensional flows (derived from the equations (1.1)-(1.3))
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Fig. 1. Velocity profile for the pulse of unit strength as given by (1.5).

corresponding to impulsively started motions; the former were particularly concerned with
the development of separated flow.

Here we consider only three-dimensional behaviours; however, the mathematical ap-
proach is essentially similar, is sufficiently straightforward, and so the calculations are only
sketched for the sake of brevity. We present solutions for a variety of different problems in
Sections 2-4, with comments on the physical results; in the final section some general
conclusions which can be implied from these examples are presented.

2. Rotational flows

In the cylindrical co-ordinate system (p, ¢, z), with x =p cos ¢, y = psin ¢, we write the
velocities in radial, axial and azimuthal directions as U, W and V, respectively. We first
investigate flows with rotation about the z-axis for small Reynolds numbers where U and W
can be set as zero; although the centrifugal force due to the rotation does lead to a flow in
the azimuthal plane, these velocities are small as O(Re), and can be neglected.

To begin, when a point rotlet is situated at the origin the governing equation is

V=V, +p7'V,—p W +V,, — p 18 (p)8(2)8(0) . 2.1)

This is the limiting situation of a rotlet of strength €} for the time 0 <t <7, where }— o,
7— 0 such that Q7 — 1. A Laplace transform in ¢, Fourier cosine transform in z, and Hankel
transform in p leads to

1 ¥ tic
V=—7
251 Jy-i=

> = Kk*J (k
e”dsf cos az daf (kp) k, (2.2)
1]

o K*+a’+s
which can be evaluated exactly for

2
r

p
V:———87T1/2t5,2 exp<~$> , t>0, (2.3)
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where p =rsin @, z =r cos 6. Diffusion of the pulse away from the origin is the sole process
at work; as t— o there is solid body rotation at finite distances, with V< p, and an algebraic
decay.

One point to check is whether the solution (2.3) does represent the flow due to a rotating
body. In the model problem the rotlet acts for ¢ = 0, and then is no longer present once ¢ > 0;
however, with a solid body which has ceased to rotate the no-slip conditions must still be
satisfied on the body for all > 0. Therefore, we now investigate the flow when the sphere
r=1is given a unit pulse of angular velocity; that is, we write V= x(r, t) sin ¢ with

X=X, +2r 'y, —2r % 2.4)
subject to x =8(¢) on r =1, x—0 as r—> . When a Laplace transform of (2.4) is taken, it

follows that

1+or ooy

vy

2

where here, and throughout the paper, we write o =s''?; this leads to

r-1 1 r (r—1)2> r=1+t (r—l 1/2)}
X="3 {(wt)l/z (—2—;— 1) exp(— ) te erfc 72 +1t : (2.5)

When the asymptotic approximation is taken of (2.5) for r> 1, it is confirmed that it does
lead to (2.3) as required; a rotlet can be used legitimately to develop an understanding of the
flow due to small axisymmetric bodies rotating inside a container. Therefore, we now use
(2.3) to find different decay rates when the rotlet pulse is positioned within different
geometries.

(a) When the rotlet is situated on the axis p =0 and z =c (0 <c <1), between the rigid
plates z =0 and z = 1, then we must solve (2.1) subject to the conditions V=0on z=0, 1.
The solution is simplified when we observe that writing

V=#exp<—i—j> [(711)_”2 exp(— ¢ ZtC)2> +V,(z, t)J (2.6)

leads to the reduced equation V;, = V,__; the first term corresponds to (2.3). After completing
the details, we are left with the expression

1 2\ <
V= 7 pt™? exp(— %l:) > sin(nc) sin(nmz) e ; 2.7
1

n=

the inverse Laplace transform reduces to the infinite sum of residues at simple poles on the
negative real axis in the complex s-plane. For small time ¢ the rotlet solution (2.3)
dominates, and (2.7) can in fact be written as (2.3) plus an infinite set of images; however,
the representation (2.7) shows how the presence of the plates quickly dampens the pul§e
until the final decay is complete. For large ¢ the decay is exponential with V< p sin(wrz) e ™™ ';
this represents the solution to V,, + A*V=0, with V=0 on z =0, 1, corresponding to the
smallest eigenvalue A.

(b) When the rotlet is situated axisymmetrically at the origin inside the circular cylinder
p =1, then following the procedure in (a) above we can write



The decay of slow viscous flow 331

e~ ) o= ) +vee0).
V= 8172 CXP(_}T[ 22 expl =74 )tV 2(ps 1) (2.8)
where V, satisfies V,, =V,  + _lep — p~?V,. After the Laplace transform is taken, it is seen
that the integral for the inverse is again evaluated as a sum of residues on the negative real
s-axis at the zeros of I,(o), with the result

V—ﬁi ( ) i ‘Yn 1(7n) J -yt 2.9
o exXp = T ) (mp)e ) (2.9)
where y, (n=1,2,3,...) are the roots of J,(y)=0; numerically, y, =3.832, y, =7.016,
v, =10.173, etc. The velocity is given as a sum of eigenfunctions J,(vy,p); the larger the value
of n the more zeroes there are in 0=<p <1, and so the quicker the damping as ¢ increases,
with the final decay showing Ve« J; (¥, p) throughout the cylinder for finite z.

When the rotlet is situated inside the cylinder more generally at the point (c, 0, 0), with
0<c<1, the same analytical approach can be followed, though now also requiring the
stream function to be given as Fourier series in cos(m¢) for integers m. The details are
extensive, but here it is sufficient to state that the inverse transform is gained through
residues to show the velocities U and V (axial symmetry has been lost) as double infinite
series over m and n including the terms J,,(¥,.,p) sin(me) exp(—y2,.p —12z°/t) for U (with
cos(me) replacing sin(m¢) for V'), where v,,, is the nth root of J, ,(y)=0. The final
motion, therefore, corresponds to the lowest eigenvalue y,, =3.832 —this is just that found
earlier when the rotlet was positioned on the axis. Consequently, it is sufficient to investigate
just the simpler axisymmetric problem when only the ultimate behaviour is required.

(c) When the rotlet is at the centre of the sphere r = 1, then the spherical symmetry allows
us to write V= x(r, ¢) sin @ again, where y satisfies (2.4). Completing the details leads to

1 < siné r
—22_‘, +1){cosa,,r— ar"}e‘ai', (2.10)

where 8, are the roots of tand =8 for n=1,2,3,...; numerically 8§, =4.493, 8, =7.725,
8, =10.904, with §, = (n +1)m.

Because of the degree of symmetry this situation can be generalized to consider the flow
between concentric spheres, and so the manner in which the exponential decay becomes
algebraic as the outer boundary grows in size can be observed. Fluid is contained between
the spheres r = ¢, d (with d > ¢), and the motion is created by the inner sphere being given a
rotation by a unit pulse about the z-axis. That is, we set y =8(f) onr=cand y=0onr=d,
which leads to

i (da’r — 1) sinh o(d — ) + o(d — r) cosh o(d — r)
r* (do’c —1)sinho(d — ¢)+ o(d — ¢) cosha(d —¢c)

X = (2.11)

When the inverse transform is taken, the total contribution is derived from the simple poles
given by the zeros of

(dcA* +1)tan A(d —c)=A(d —¢); (2.12)

. . . —A2
there is an infinite set of roots A,, with the slowest decay proportional to e *1* where the
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Fig. 2. The smallest root A, of the eigenvalue equation (2.12) for different values of the ratio d/c.

value of A, for different values of the ratio d/c is given by Fig. 2. As d/c— %, A;— 0 and the
exponential decay becomes algebraic; asymptotically, A, =4.493(d — )" as d/c— .

It can be observed from the three examples with a rotlet how the more confined the
domain implies the more rapid the decay as a general principle: from e >*% for the flow
between two plates a unit distance apart, to e '**** for the flow inside a circular cylinder of
unit radius, to e **'*" for the flow inside a sphere of unit radius.

(d) One case we include without axial symmetry concerns a rotlet pulse at the point
(1, 0,0) in cartesian co-ordinates, where the axis of rotation is vertical, with a wall along the
plane x = 0. Because the motion is completely due to the shear created by the rotlet the axial
velocity w is identically zero, and so we can define a stream function ¢(x, y, z, ) by u = &,
v=—¢, with w =4, + ¢, ; then the vorticity satisfies

o,=0,to, ‘o, .

When we define

)

U Boys)= [ et [ cosyzaz | cos Bywte, y. 2,000y
0 0 0

it is seen that

g <kl B 2e77F (k+B)e "D
K k=P k(k—B) °

k=B +y’+s. (2.13)

<l

hd
w

The inverse transform can be completed, and it is found that (/F=‘§7r_1y2t_5/2 as t— o for
finite y; this is a linear shear flow. Of particular interest is the presence of separated flow for,

from (2.13), it is found that

_ 1 y2+22+1>|: <t>1/2{ 2 J-{ u? }]
(w)xzo——wexp<——4t——— 1—2t+277_‘ e’ —2f . € dui|, (2.14)

where ¢ =%yt_”2. 1t follows from (2.14) that the flow separates instantaneously from the
wall at y = 0 and lasts until r = ¢, = 1.089, with the maximum extent of the separation point
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Fig. 3. The position of the separation point y(¢) for the pulse flow due to a rotlet in front of a plane wall.
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Fig. 4. The streamlines during the separated part of the flow due to a rotlet in front of a plane wall.

from the origin begin (y,),.., = 1.307; the graph of y (¢) is given in Fig. 3. The streamlines
for the flow during the time 0 <t <t, are found from (2.13) and represented in Fig. 4; the
maximum displacement is (x,),,,, =2.162. The growth and decay of this eddy is a distinctive
feature.

Another point to emphasize is that the motion here is essentially two-dimensional with the
z-variable present only as the diffused scaling exp(—z>/4t); this follows from the observation
that ¢ in (2.13) is a function of x, 8 and y’ + s alone.

max

3. Axisymmetric streaming flows

Another group of problems we consider concerns axisymmetric motion in the azimuthal
plane where the motion is described by the radial and axial velocities U, W, with V being
zero. Consequently, the stream function W(p,z,t) can be defined by U= p 'V,
W= —p"\I’p, and the vorticity
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¥ 193 @&
Q=L_,¥ where L_=———-——7"+—3.
ap
If there is a stokeslet directed along the z-axis at the origin in an unbounded fluid then the
governing equation is

Q,=L_Q+p '8'(p)8(2)8(c) ; (3.1)

the singular term represents a point source of momentum which is present in the limit as
t— 0. A stokeslet pulse attempts to model any small body which moves quickly over a finite
distance and then stops. The solution of (3.1) is calculated through taking transforms in ¢, z
and p (as described for the rotlet in Section 2), and leads directly to

1 (1 r 1 r’ } >
_E{—r- erf(w) -Wexp<—z> sin“@ ; (3.2)

r* =p® + z°. For small time ¢, the approximation to (3.2) shows ¥ = (47)'p?r >; the effect
of the momentum pulse is to instantaneously create a dipole, and the subsequent motion
shows its decay through diffusion. For large ¢ we have ‘If%‘g;(m)'mrz sin’g for r=0(1);
the final motion represents a uniform stream which decays algebraically in ¢, and the error
term is proportional to r* sin’ —which indicates parabolic streaming flow.

It is necessary, as before, to confirm the validity of the model of a stokeslet as representing
a finite body through calculating the complementary problem of the flow past a sphere. That
is, we investigate the limiting situation where a uniform stream with velocity U acts for
0<t<F with U—> o, f— 0 such that Ui— 1. When we write ¥ = O(r, 1) sin’@, it follows that

0 2 a\/d? 2)
<]9r_2—7_5><37"7 ®=0, (3.3)

together with ®=®, =0 on r=1, plus ® c—=’%r28(t) as r— . It is sufficient to take Laplace
transforms and solve the resulting ordinary differential equation to show

o= enli) -l -l )

alternatively, the solution for the impulsively started Stokes flow past a sphere (cf. Landau
and Lifschitz [11]) can be differentiated with respect to time. For large times, and r = O(1),

o~ _1_~12,-3/2,2 3 1,=1y a2
V= —gm (" —3r+1r )sin%e,

which represents the classical Stokes stream function, with a decay rate Ot *'?). Also, it is
checked that when we take r>1 in (3.4) then the sphere corresponds to a stokeslet of
strength 177" at large distances.

(a) We now consider the effect of a container on the flow due to a stokeslet pulse. First,
the stokeslet is present at the origin inside a circular cylinder, and directed along the z-axis,
so that we must solve (3.1) subject to ¥ =¥ =0 on p =1. When the transforms

E(p, a,s) =L e dtf cos(az)¥(p, z, t) dz

0
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are taken, this leads to
4 = ps [aK,(ap) — (a® +5) *K,((a® +5)""?p) + A(a, 5)I,(ap)
+ B(a, ) ((@” +5)'?p)] (3.5)

where the first two terms represent (3.2), and the coefficients A and B are derived from the
no-slip conditions on p =1 in the form

Al (a) + BI,((a® + 5)"*) = —aK,(a) + (a® + 5)"’K,((«® + 5)'?) ,

2, 12 2, N2 2 2, 102 2, N2 (3.6)
aAl(a)+ (a”+5) “Bl,((a” +5) ) =a"Ky(a) = (a” +5) “Ky((a”+5) ).

The general solution is obviously detailed, though it can be confirmed that the inverse
Laplace transform of (3.5), given (3.6), is determined solely by the sum of residues at the
simple poles, whose positions are known from the roots in the s-plane of the discriminant
A =0, where

A= (a2 + 5)1/211(‘1)10((“2 + s)l/z) - ‘110(‘1)11((‘12 + 5)1/2) >

these roots all lie on the negative real axis in the s-plane.
When we first limit our discussion to the situation at large distances z, it is seen that

in

v

1 S {1 =)} Ti(m)p” = pli (e e
PP g { olte)} u 1(:0) “ 3.7

2 ) () + (i + 20, V() -

where u, (n=1,2,3,...) are the roots of the equation uJ,(un)=2J,(x); numerically,
M, =5.135, u, =8.406, p, =11.610. The slowest decay as determined from n =1 shows the
axial velocity

W {uJo(mp) — 20, ()} e~ (3.8)

from (3.7); the velocity profile is shown in Fig. 5. It is interesting to note that there is this
definite flow (with zero mass flux) as |z|— «; in the steady Stokes flow with a stokeslet on the
axis the velocity decays exponentially in |z| with an infinite sequence of eddies along the
length of the cylinder (see Liron and Shahar [12]). Clearly the function of p in the axial
velocity representation (3.8) follows from the solution of

¢ 9 2)( P a)
—-—p '+ —-p =] ®(p)=0
(apz P TR\ TP e (p)

subject to Pxp as p— 0 and &=’ =0 on p =1 corresponding to the smallest eigenvalue
M-

We also observe that when we take the inverse Laplace transform of (3.5)2 for all z,
expressing this as the sum of residues with the slowest decay proportional to e ', then the
value of u, depends on a within the inverse Fourier transform. It can be shown that u,(a) is
a monotonic decreasing function from u,(0) =5.135 to u, () = 3.832; this fact indicates that
the decay is most rapid for large z.

Further, when we consider the effect where the stokeslet, still directed along the z-axis, is
positioned at (c, 0, 0) (with ¢ <1)-then it is found that the final motion is still proportional
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Fig. 5. Velocity profile at large distances for the slowest decaying behaviour for the pulse flow due to a stokeslet on
the axis of a circular cylinder.

to (3.8); the axisymmetric behaviour comes to dominate as ¢ increases, as was found for the
rotlet in the previous section.

(b) If the stokeslet is at the centre of the sphere r = 1, then we must solve (3.3), and the
Laplace transform of ¢(r, t), which behaves like (3.2) as r—0, is given by

— 1 1 1 —or 1l—cosho +osinho ,
47 (r, s)=g— ;-i—;z—r € - 2 r
3-3e " —3ce " —cg’e” ( sinha-r)
- - = coshor ————
o(3sinh 0 — 30 cosh ¢ + o sinh o) or

_ (o coshg —sinhg)(3 —3cosha +3osinho — o’ cosh o) 2
a?(3sinh o — 30 cosh o + o sinh o)

The inverse transform is completely given by the residues, and the function ¢(r, t) is seen to
be a sum of the terms

sin k,,r sink,\ ,| _.z
COS K7 — —\cosk, — rrre "t
KT K

n n

where «, (n=1,2,3,...) are the roots of (x ' —1k)tan« = 1; numerically, k, =5.763,
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Fig. 6. The streamlines for the final transient state when a stokeslet is at the centre of a sphere.

K, £9.095, k; =12.323. The streamlines corresponding to the final transient state where
n=1 are given in Fig. 6; there is a simple vortical flow within the sphere, with the rapid
decay proportional to e ***'* —which is faster than for the rotlet inside a sphere.

4. Source flows

The other main model we investigate has a point source at the origin set in the wall along the
plane z = 0. If the fluid occupies the half-space z = 0, the problem can be posed in terms of a
stream function ¥(p,z, t), which satisfies Q, = L_,Q, Q= L_,¥ subject to ¥ =8(t), ¥, =0
on z=0,¥—0 as z— ., When Laplace and Hankel transforms are taken it follows that

¥ +iw 1 1 ~(k2+5)1/2
—_ 7 - - —kz ———
v 2771,( kJ (kp)dkf [{k+(k2+s)”2—k}e ( N )1/2 ]ds
4.1)

For this case the integrals for the vorticity can be evaluated exactly as

2
r

02020815 2]
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In particular, the integral (4.1) shows that ¥ =(smt)"'’r'sin’9 for 0<t<1, which
represents a flux from the shear layer which forms instantaneously along the wall towards the
origin. The final motion is represented by

=1p°2%7 ast—oo; (4.2)

this represents an axisymmetric stagnation point flow towards the origin.

(a) This model is now extended by including a parallel plate along z =1, and so the
conditions ¥ =¥, =0 on z = 1 must be included. The solution follows previous analyses; the
first observation we make concerns the stream function at large distances from the source.
We find that ¥ is independent of p, and so it represents a radial shear flow where the axial
velocity W is zero, and the radial velocity U is proportional to p~' with no mass flux.
Specifically, for large times ¢ we have

W o (sin 8,z cos 8,z — 8,z + 8, sin’8,z) e °1" (4.3)

where 8, =4.493 is the smallest root of tand =48 (see after (2.10)); the velocity profile
corresponding to (4.3) is given in Fig. 7. The representation (4.3) for the stream function
can be seen as the solution of ¥,,,, + 8°¥,, =0 with ¥ =¥, =0 on z =0, 1 corresponding to
the lowest eigenvalue.

The other comment concerns the rates of decay at different positions, parallel to that in
Section 3(a). As was described there, when the inverse Laplace transform is taken first for all
p, the residue corresponding to the slowest decay is proportional to e ¥ where 8, depends
on the variable k£ within the Hankel transform. It is found that 8, (k) is a monotonic function
of k from 8,(0) =4.493 to §,() =3.142, which shows again that the decay is most rapid at
large distances from the source.

(b) To conclude, we remark that the axisymmetric problem with a stokeslet pulse at (0, c)
between the walls z=0,1 has also been investigated, but because the analysis is highly
detailed we just comment on the major conclusion that there is no shear flow equivalent to

Z“

[

0 V- : ,D;

Fig. 7. Velocity profile at large distances for the slowest decaying behaviour for the pulse flow due to a source
between parallel plates.
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(4.3)—1in fact, ¥ decays exponentially as p—>. To solve the basic equations €, = L_,{},
Q=L _,"¥ we can write generally

Voe ®pK, (up)H(z) for u>0, (4.4)

where H(z) satisfies the Sturm-Liouville problem {8°/8z% + (8° + u*)}{a*/0z° + u*}H =0,
plus H=H'=0 on z=0,1. Clearly H(z) is the sum of four eigenfunctions cos pnz, sin pz,
cos wz, sinwz, with w*=8%+ u”, where satisfying the boundary conditions leads to the
equations for the eigenvalues in the form

2uw(1—cos pcosw) — (u +o2)sin pw sinw =0. 4.5)
This equation (4.5) can be factorized to show either
ptan Jw =wtanip or wtanle=ptanip;

each of these does have an infinite set of real, positive roots to provide an infinite set of
terms for an eigenfunction expansion. When ¢ is large we would take the solution of the form
(4.4) corresponding to the lowest value of 8.

5. Conclusions

Some general observations can be stated now which have emerged from the specific result
which have been described so far. First, when the fluid is bounded the decay is exponential
in ¢, whereas it is algebraic otherwise. If the decay is algebraic then the velocity for large ¢
would, of necessity, be of the form ¥(x, y, z)7(t), where J(¢) is algebraically small, and 7" is
a solution of the steady Stokes flow equation for slow viscous flow with zero velocity on the
boundary. From the theorem of Finn and Noll [13], this requires ¥ to be identically zero
within a bounded domain. For an unbounded domain, where it is not essential that 7" tends
to zero at large distances, algebraic decay is possible.

Therefore, when the fluid is bounded the final motion can be derived from the solution of
an eigenvalue problem, where the lowest eigenvalue A, gives the exponent for the decay
rate; also, the eigenfunction ¢,(r) corresponding to A; has fewest nodes of all such
eigenfunctions. For second order boundary value problems ¢, has zero nodes (cf. Courant
and Hilbert [14]), and because the higher order equations here can be factorized into second
order equations the result can be extended. The eigenfunction ¢, (r) is the ‘simplest’ one in
the sense that it has the greatest degree of symmetry. As an example, when we wanted to
find the final motion due to a rotlet or stokeslet positioned generally in a circular cylinder, it
was found in each case to be equivalent (up to a multiplicative constant) to that when the
rotlet or stokeslet was positioned on the axis. This would also be true for the sphere, and for
any container with an axial symmetry; the easiest mathematical problem to solve is also the
most relevant to describe the final physical behaviour required.

Because the decay is exponential when the container is bounded, the nature of the final
motion can be calculated at least numerically for more complex geometries than would be
possible if the solution of the complete initial value problem had to be calculated. If a rotlet
is positioned inside a cylinder, for example, both with axes parallel to the z-axis, then it
would be sufficient to solve the Strum-Liouville problem o, + w,, + Aw =0, where @ =
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Y., T ¥,,, in the domain bounded by the closed curve C which forms the boundary of the
cross-section, subject to regularity conditions inside C plus ¢ =, =0 on C.

As the outer boundary of a constrained motion increases in size the exponent in the
exponential decay tends to zero and the decay becomes algebraic. In the limiting situation
with small exponent the problem has singular perturbation characteristics with two separate
domains in the fluid.

For an unbounded domain the final behaviour showed solid body rotation from a rotlet, a
uniform stream from a stokeslet, a simple shear flow (Section 2(e)) and stagnation point flow
(see (4.2)) along a plane wall. In all cases this represents the ‘simplest’ flow possible within
the geometric constraints corresponding to the pulse; because the decay is algebraic, and the
basic variable is the diffusion variable r*/t (or p*/t, y*/t, etc., depending on the situation), it
is the term with the smallest power in the distance which dominates for large ¢.

When a pulse acts locally at some point in a partly-bounded container (between parallel
plates or within an infinite cylinder), it was found that the rate of decay is greatest at large
distances from the pulse.

All the computations described here have been developed within the context of the slow
flow assumption so that the Stokes flow equations could describe the motion for all time
t> 0. However, there is a greater degree of applicability for a large range of situations where
the fluid comes to rest freely in the sense that the driving forces stop instantaneously, or else
decay rapidly enough for the viscous forces within the fluid to bring the velocity to zero,
rather than the rate of decay of these forces to directly control the process. In particular, the
flow represented by the eigenfunction corresponding to the smallest eigenvalue in the
computations within a bounded container, and the fact that this decays exponentially ensures
that such a behaviour must satisfy the linear equations. Alternatively, the unbounded
stagnation point flow is intrinsically non-linear throughout the fluid (cf. Proudman and
Johnson [15]), and when a large flow for such a geometry is considered the corresponding
linear solution would be insufficient; in the neighbourhood of the stagnation point there
would be correct local flow at large time, though with the possibility of different algebraic
decay.

Finally, a more specific result can be mentioned with respect to pulse flows due to a rotlet
set within a cylindrical container; the axis of the rotlet and cylinder are both taken to be
parallel to the z-axis and the rotlet is set in the plane z = 0. When the transform ¢(x, y, v, §)
for the stream function ¥(x, y, z, t) is defined by ¢ = [ e dt [’ ¢ cos yz dz, it is seen that
¥ is always a function of x, y and y” +s alone. Consequently, when the two-dimensional
problem in the x, y-plane for a line rotlet pulse is solved, the corresponding solution for the
three-dimensional problem for a point rotlet is just the two-dimensional solution multiplied
by 17'"?t™""? exp(—z°/4t), the Fourier cosine transform of e Therefore, each of the
two-dimensional solutions for the impulsively started flow due to a line rotlet described in
Smith [9] can be differentiated with respect to time, and then multiplied by this factor to give
immediately new solutions for pulse flows in three dimensions. In particular, it follows that
there is separated flow for the rotlet both inside and outside a circular cylinder, generalizing
the discussion in Section 2(d).
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